Concept of a Script MIB based
Policy Management System

Frank Straul}

Computer Science Department
Technical University Braunschweig
Bultenweg 74/75
38106 Braunschweig, Germany
strauss@ibr.cs.tu-bs.de

May 2001

Abstract

Tasks 6.1 — 6.3 of the joint Jasmin Project betweenTéwhnical University
of Braunschweigand NEC C&C Research Laboratoriessheduled for the time
from January to August 2001 are concerned with the design and implementation
of a policy management system based on the Jasmin Script MIB implementation.
This report documents a number of requirements and the general concepts
behind this Jasmin based approach. The architecture of a Java class package
supporting the programming of policy scripts and the application to the policy
based management of DiffServ routers are described.

1 Introduction

Policy based management is not a new area of research and engineering. It has been
addressed in the past from the research point of view by several research groups, work-
shops, and conferences, P] and from the vendors’ point of view by some specific
engineering and implementation efforts, e §j. [

The goals of this project are somewhere in between: Based on some research knowl-
edge from the past few years and based on the knowledge from the work that has
been done so far in the IETF Policy Framework (POLICY), Configuration Manage-
ment with SNMP (SNMPCONF), and Resource Allocation Protocol (RAP) working


mailto:strauss@ibr.cs.tu-bs.de
http://www.ibr.cs.tu-bs.de/
http://www.ibr.cs.tu-bs.de/
http://www.ccrle.nec.de/

groups, a policy management system is going to be outlined and implemented in a pro-
totype fashion. Its basis will be the IETF Script MIB][infrastructure that has been
implemented in previous phases of this projé&gt [The Script MIB functionality will

be used to transfer and control the execution of policy ‘scripts’. The execution of a
policy script is realized by a new runtime engine for the Jasmin Script MIB agént [
This project focuses on the design and implementation of a policy definition language
(or a policy definition extension to an existing language) and its implementation as a
Jasmin runtime engine.

As a first step in this project, this document gives an outline of the requirements and
our proposed solution of a Java based extension to the Jasmin architecture that allows
to specify and execute policies in terms of Java programs. A few further ideas are
presented that could lead to a more efficient policy description language.

1.1 Terminology

Various research and engineering approaches related to policy based management
show some variance in terminology. To assure a common unambiguous terminology
throughout this project we manifest the following terms.

Policy: A set of rules usually concerned with a commalomain that make up a
general network management goal.

Domain: An area of network management, targeted bpyoticy. Examples are IP
filter, IPsec, or DiffServ configuration. The domain targeted within this project
is the configuration of DiffServ routers, although the general architecture will
not be limited to any domain.

Element: The actual subject on which @olicy rule operates. Examples are IP fil-
ters or DiffServ classifiers or meters. In an object oriented fashion, elements
are modeled as classes. Methods of these element classes can be used by the
conditionsandactionsof rulesto retrieve element instance information, e.g. a
value of a single attribute, and to initiate operations on element instances, in a
protocol independent way. Only the elements’ interfaces to the managed devices
are protocol dependent.

Role: An attribute (usually a string) administratively assigne@t@mentsn order to
group instances of the same class. This allowssto operate on a subset of
elements that are assigned to a specific role.

Rule: A construct of the form

on <event(s} [ priority <priority> ][ if <condition>] do <action(s)>



A rule is being evaluated at discrete points in time given byethent(s) At each
occurrence of aevent all rules that are triggered by thetentare processed in

the order given by thpriority values. If no priority is given, there is no preferred
order for this rule.

First, thecondition if present, is evaluated. If the result is true or if twndition

is absent, thactionis executed. Attributes of the initiatirgventcan be refer-
enced by theonditionandaction Theconditioncan operate on a singidement

or on a set oklementsl|f it operates on a set of elements, thetion(s)are ex-
ecuted for each matching element(s). Their instance identifying attribute(s) can
be referenced within thaction(s)

Event: A formally defined event that can be boundrtdes in order to specify the
time when the evaluation of those rules is triggered. Types of events are time
events (periodic, calendar based), external events (e.g. based on received SNMP
notifications), and poll events (e.g. when the status of a regularly polled attribute
changes).

Priority: An integer value that can be used to specify the order of the evaluation of
multiple conditionaction pairs triggered by a commavent

Condition: An expression that is evaluated to a boolean value each timeildés
triggered. If theconditioncontains variables that spec#ementsit is evaluated
for each combination of those elements.

Action: An operation that is executed each time tomditionhas been evaluated to
true. Attributes of theventthat triggered the execution and variables specifying
theelementshat lead to the matchingpnditioncan be referred within the action.
Special functions that could be useful in actions are (i) raisingenemtsand (ii)
skipping all other actions that would otherwise be executed subsequently upon
the sameventthat triggered this action.

1.2 Domain; DiffServ

The targeted policy domain of this project is the configuration of DiffS&fvquters.
However, the general architecture will not be limited to DiffServ, but most of the ex-
amples and the elements that will be modeled and implemented throughout the next
months will be concerned with the configuration of DiffServ TCB elements like clas-
sifiers, meters, markers, queues, and schedulers.

Interfaces for DiffServ configuration are being developed and implemented by dif-
ferent groups at the time. The IETF DIFFSERV working gro8pi$ developing an

SMI MIB [9] and an SPPI PIB1(Q] for managing DiffServ routers via SNMP and
COPS-PR. Two free DiffServ implementations that are valuable for evaluating the im-
plementations being developed during this project are available for the Linux kernel.

3



The first one has been integrated with the official Linux-2.4 kernel release. Another
one has been implemented in a joint project between NEC C&C Network Product De-
velopment Laboratories and the University of Bern. For the first one, two independent
DiffServ MIB implementations are underway: one as a master thesis project by Remco
van de Meent at the University of Twehtand another one at the Pohang University of
Science and Technology ]]. At NEC C&C Research Laboratories an API for their
DiffServ implementation is being developed.

At least one of these DiffServ implementations and DiffServ management interfaces
have to be used in this project in a way that DiffServ specific elements are designed
and implemented. The ‘upper’ protocol independent interface of these elements will
be used by DiffServ policies. The ‘lower’ interface will use either the DiffServ MIB
SNMP interface or the NEC API. It is not expected that an implementation of the Diff-
Serv PIB will be available in time. Ideally, multiple implementations of the designed
DiffServ specific elements will be available sometime to check their exchangeability
with a common policy.

2 Concepts

This section presents a number of requirements for the policy management system
that is going to be developed, followed by the concept of an architecture based on the
Jasmin implementation of the IETF Script MIB.

2.1 Requirements

This section describes a number of requirements that we claim to achieve for a policy
management system, although they might be common to all approaches in policy based
management.

e A policy rule condition must allow read access to the attributes of zero, one or
multiple elements. This has to be done in a way, so that the according action can
unambiguously reference those elements that matched the condition. Similarly,
the attributes of the event that triggered the rule must be accessible. This means,
we need a concept of free variables in the event and condition definitions that
are bound by the runtime system to element instances when passed to the con-
dition and action. These variables can be declared implicitly in the events and
conditions or explicitly.

e There must be a construct to specify the value space in which the free variables
of conditions are evaluated. This may span all instances of elements within a
certain table or even all instances of a class among a number of managed agents.

1Remco van de Meentremco@vandemeent.net

4


mailto:remco@vandemeent.net

A class that models a certain element must support a number of accessor meth-
ods that allow a policy author to retrieve and manipulate an element in a comfort-
able way. E.g., counter retrieval functions should implicitly support rate com-
putations, and SNMP RowStatus handling should be hidden by methods to con-
struct and destruct element instances. This is not a requirement for the policy
engine architecture itself, but for the design of domain specific elements.

So far, at least three types of time events are required: Periodic events that trig-
ger continuously at a given period. Calendar events that trigger periodically at
points in time specified by calendar-type attributes (month, day, weekday, hour,
minute), and one-shot events that trigger exactly once at a point in time speci-
fied by calendar-type attributes. These three types are motivated by the Schedule
MIB [12].

Another type of event is based on the reception of external notifications like
SNMP traps/informs or COPS-PR state reports. These notifications should be
mappable to domain specific events. Details of the initiating notifications should
be accessible through accessor methods of the events.

The policy runtime engine must support a mechanism to report errors and op-
tional tracing/debugging information so that users can monitor the policy engine
and the authors of policies can test and debug their policy code.

The access to elements in conditions and actions may fail. The policy runtime
engine must be able to handle these situations in a way that accordingly written
policy code can catch the error conditions and bring the affected element to a
determined state.

It must be possible to store and execute multiple policies independently. Their
code must not share any name space. However, avoiding side effects by multiple
policies or policy rules acting on common elements is the responsibility of the
policy author(s).

A security mechanism is required to differentiate which users have access to
which operations on which policies. This is regarded as a very sensible aspect.
Building on an existing security mechanism could be helpful.

Ideally, the policy programming interfaces of domain specific elements are in-
dependent of the underlying management interfaces. This means a policy acting
on an element does not have to care about the question whether an underlying
device is managed via SNMP, COPS-PR, a command line interface or an API.

In theory, policies declare behaviors of elements dependent on conditions. How-
ever, a programmatic policy system has to work in a deterministic sequential

5



fashion; especially complicated actions must contain a bunch of code instead of
just the goal that is about to be reached. The notation of policies should retain
the declarative fashion of policies as much as possible.

¢ It should be possible to avoid redundancy in a way that policies or policy groups
sharing rules, and rules sharing conditions or actions can be built by referring
common code instead of copying code fragments. This allows to increase re-
usability and to avoid some errors.

e A communication mechanism between active policies based on shared memory
or messages would also help to reduce redundancy. For example, one policy can
determine a responsible person to which a number of other policies send reports
in case of errors.

e It could be useful to pass arguments to policies when they are activated. Al-
though all parameters of a policy behavior should be defined within the policy
code, arguments could be useful to turn debugging on and off or to trace a policy
in read-only mode.

2.2 A Script MIB Based Approach

In contrast to other research and development approaches, this project will build on the
IETF Script MIB architecture as an infrastructure for transferring policies and manag-
ing their enforcement. The Script MIB has a number of functions that are required by
policy systems in general. Furthermore, some of the requirements listed in S&dtion
can be met at low costs in the Script MIB context.

e The Script MIB architecture supports pushing and pulling mechanisms for trans-
ferring scripts from a SNMP command generator or a script repository to Script
MIB agents. Controlling the execution of scripts is also supported, including
starting, suspending and resuming, terminating, controlling maximum run times,
passing arguments to scripts, etc.

e SNMP security based on SNMPv3 and the user based security model and on
the view based access control model is fully applicable to the Script MIB. It is
reasonable to build on SNMP security and the Script MIB to achieve a homoge-
neous security setup.

e Logging and tracing of scripts is a general functionality that is useful for scripts
as well as for policies. Although, the current Script MIB does not support access
to logging data, the Jasmin implementation already supports logging via the
SMX interface between runtime systems and the Script MIB core agent.



Policy Manager Host Policy Repository

- editing/compiling Java policies
- storing policies to the repository
- controlling policies at the agent(s)

- storing policies from the manager

maintaining - serving retrievals from agents

controlling retrieving
/
Policy Agent Host
Java runtime engine general
policy package
abstract
lic
Java policy
Jasmin agent kernel SMX_ policy scripts
—
time
events
domain-specific/{)olicy paékage %
storing : : abstract
\ elements events event
) accessing T
script storage abstract
SNMP COPS-PR API element
driver driver driver

\

locally managed
entity

/

\

N

SNMP managed
device

SNMP managed
device

COPS managed
device

Figure 1: Architecture of a policy management system based on the JASMIN Java
runtime engine.

The general architecture of the Script MIB based policy system is shown in Figure
This approach is based on the Jasmin Java runtime engine. Hence, policies are Java
programs edited and compiled on a manager host. The createfiles are served to

the Jasmin agents by a policy repository via HTTP. When the agent activates a policy,
e.g. on demand of a manager, it forks a Jasmin Java runtime engine and forces it via
SMX to start a given Java “script” from the local script storage.



Up to this step, the whole process is common to any other Script MIB runtime system.
The policy specific components lie within the Java runtime engine, which makes use of
Java class packages that support policies. A general policy package contains a number
of abstract classes that represent policies (with their rules, conditions, and actions),
events, and elements. Besides these abstract classes, domain-specific packages contain
derived element and event classes, e.g. to represent classifiers, meters, markers, etc. in
case of a DiffServ specific policy package. These domain-specific classes along with
classes from the generic policy package, like time event classes, are used by policy
“scripts”.

The interaction between the domain-specific classes and the managed devices is based
on interface drivers hidden from the package API. This allows to support different
interfaces, e.g., SNMP, COPS-PR, local APIs or CLlIs, without the need to adopt policy
scripts to these interfaces or protocols.

2.3 Class Packages and Usage Example

The hierarchy of generic and domain-specific classes is shown in Eigure

) Polic
Event _triggerss Yy
7 B
! |_ 1 heck *
PeriodicEvent 1.+ Condition checks » 0. . *I'F|ement

CalendarEvent

b—|; Action works on»

OneShotEvent

MeterFailed predefined policies, Classifier Meter
rules, and actions ?

iExarrpI e of a DiffServ specific package

Figure 2: Class diagram of the generic and some DiffServ specific classes.

A policy script's main class has to be derived from felicy class. Usually, it

has to instantiate and configure a number of time events and domain specific events.
Rule s are instantiated and registered with the policy and in turn register the trigger-
ing event instances. Each rule also registers an instance of a class implementing the
Condition interface and as well a number of instances of classes implementing the
Action interface.



public class HomeworkerPolicy extends Policy {
/I This DiffServ policy grants home workers’ hosts a higher service
/I at the Remote Access Server during worktime hours. Worktime
/| starts at 8am. It ends at 6pm, but may be delayed in 5 minute
/I steps if staff members are still logged in.
I
/I We assume the appropriate TCB is already set up and we just have
/I to toggle the diffServDscpMarkActDscp between DSCP_BEST_EFFORT
/I and DSCP_GOLD.

private final static String RAS_HOSTNAME = "ras.company.de”;
private final static long DS_ACTIONID_HOMEWORKER = 42;
private DiffServHost ras;

private DiffServMarkAction homeworkerMarker;

private SiteMonitor site;

private static class StopCondition implements Condition {
public boolean condition(Event event, Vector elements) {
/I triggering event and elements are not used by this condition.
return site.numActiveUsers() == 0;

}

private static class StartAction implements Action {
public boolean action(Event event, Vector elements) {
/I triggering event and elements are not used by this action.
homeworkerMarker.setDscp(DSCP_GOLD);

}

private static class StopAction implements Action {
public boolean action(Event event, Vector elements) {
/I triggering event and elements are not used by this action.
homeworkerMarker.setDscp(DSCP_BEST_EFFORT);

}
public static void main() {

Rule startRule = new Rule();
Rule stopRule = new Rule();

startRule.registerEvent(new CalendarEvent("mon-fri h8 m0"));
stopRule.registerEvent(new CalendarEvent("mon-fri h18-h21 mo0/5"));

/I the startRule condition is always true.
stopRule.registerCondition(new StopCondition());

startRule.registerAction(new StartAction());
stopRule.registerAction(new StopAction());

ras = new DiffServHost(RAS_HOSTNAME);
homeworkerMarker = new ras.getActionByld(DS_ACTIONID_HOMEWORKER);
site = new SiteMonitor();

activate();

Figure 3: A simple Java policy example.



A condition or action can refer to the triggering event by évent parameter. Sim-

ilarly, an action can refer to the combination of elements matched by the condition
by the passed vector &lement instances. The whole sequence of element combi-
nations that are to be filtered by the condition has to be returned by the overwritten
iterator method of theCondition  class. Otherwise, the condition does not op-
erate on any elements and in case of a condition match, the action is called once with
an emptyelements vector.

A very simple example of a Java policy containing two rules is shown in Figure

Its goal is to give home workers that are connected to their company through a Diff-
Serv capable remote access server a higher service during work hoursair(g

method instantiates two rules. Th&@rtRule s triggered by &CalendarEvent

each day from Monday to Friday at 8am. This rule has no condition. Hence, its ac-
tion StartAction unconditionally sets the DSCP value of a corresponding DiffServ
marker action to the GOLD code point value. In a similar fashion, in the evening from
6pm on thestopRule is triggered every five minutes by anoti@alendarEvent

This rule has a condition nam&topCondition that checks a local site monitor
element for the number of active login sessions. Only if no more sessions are active,
the condition returngue and thestopAction s called, which then sets the DSCP
value back to BESTEFFORT.

Note that theDiffServHost , DiffServMarkAction , and SiteMonitor

classes used by this imaginary example have to be supported by domain-specific policy
packages. Note also, that this example is not intended to represent a compilable Java
policy script.

3 Outlook

The next steps within this project will be as follows:

e The classes of the generic policy package have to be refined and implemented.

e The classes of the DiffServ policy package have to be completed, refined and
implemented.

¢ Real-world examples from the DiffServ domain have to be developed.

e DiffServ drivers for the DiffServ MIB and/or the NEC DiffServ API have to be
developed.

To fulfill the requirement for a logging facility of the policy runtime system and the
Script MIB system in general, an appropriate extension to the Script MIB might be
developed and proposed to the DISMAN working group.

10



3.1 Adaption of a Policy Definition Language

One significant drawback of a policy management system purely based on the Java
programming language is the extraordinary expenses that has be spent even for very
simplistic or standard policies. For a single policy a minimum of three classes have to
be instantiated. Usually, there are some more objects that have to be handled and even
some classes have to implemented.

It is expected that a number of standard policy rules can be identified, characterized
by a number of parameters. If this would be implemented (denote in the lower center
box in Figure2), this could lead to a smaller number of classes and less lines of code
required for some policies. However, the frame of a Java program remains.

The evident next step is to define a policy definition language or deploy one of the
languages already developed, that could be compiled to the Java policy scripts. This
compilation could take place implicitly on the agent so that the maintenance of policies
at the manager and repository gets easier.

A research group that is very active in the area of policy based network and distributed
systems management is formed around Morris Sloman at the Imperial College, Lon-
dor?. The Ponder Policy Specification Languadé][and the Ponder compiler which

is already available might be a good starting point and will be investigated.

References

[1] M. Sloman, J. Lobo, and E.C. Lupu, editoPalicies for Distributed Systems and
Networks - Policy 2001 Workshop Proceedinggstol, 2001. Springer.

[2] Proc. 6th IFIP/IEEE International Symposium on Integrated Network Manage-
ment Boston, May 1999.

[3] J. Nicklisch. A rule language for network policies. IRolicy 1999
Workshop Proceedings http://www-dse.doc.ic.ac.uk/events/policy-99/pdf/26-
Nicklisch.pdf 1999.

[4] D. Levi and J. Scinwalder. Definitions of Managed Objects for the Delegation
of Management Scripts. RFC 2592, Nortel Networks, TU Braunschweig, May
1999.

[5] F. Strauf3, J. S@nwalder, and J. Quittek. Open Source Components for Dis-
tributed Internet Management. Rroc. 7th IFIP/IEEE International Symposium
on Integrated Network Managemefeattle, May 2001.

2Morris Sloman<m.sloman@doc.ic.ac.uk

11


http://www-dse.doc.ic.ac.uk/events/policy-99/pdf/26-Nicklisch.pdf
http://www-dse.doc.ic.ac.uk/events/policy-99/pdf/26-Nicklisch.pdf
mailto:m.sloman@doc.ic.ac.uk

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

J. Quittek, J. Sobnwalder, and F. Strauf3Jasmin - A Script MIB Implementa-
tion. TU Braunschweig, NEC C&C Research Laboratoriety://www.ibr.cs.tu-
bs.de/projects/jasmin2001.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architec-
ture for Differentiated Services. RFC 2475, Torrent Networking Technologies,
EMC Corporation, Sun Microsystems, Nortel UK, Bell Labs Lucent Technolo-
gies, December 1998.

DIFFSERV Working Group. Differentiated Services Working Group Charter
IETF, http://www.ietf.org/html.charters/diffserv-charter.htraD01.

F. Baker, K. Chan, and A. Smith. Management Information Base for
the Differentiated Services ArchitecturelETF DIFFSERV Working Group,
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-mib-09 thlarch 2001.

M. Fine, K. McCloghrie, J. Seligson, K. Chan, S. Hahn, C. Bell, A. Smith,
and F. Reichmeyer. Differentiated Services Quality of Service Policy Infor-
mation Base IETF DIFFSERV Working Grouphttp://www.ietf.org/internet-
drafts/draft-ietf-diffserv-pib-03.txtMarch 2001.

Jae young Kim., POSTECH DiffServ  MIB Implementation
http://dpnm.postech.ac.kr/research/01/ipqos/dsmib/index.BO0LL.

D. Levi and J. Schnwalder. Definitions of Managed Objects for Scheduling
Management Operations. RFC 2591, Nortel Networks, TU Braunschweig, May
1999.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-
der policy specification language. Technical reporhttp://www-
dse.doc.ic.ac.uk/ mss/Papers/Ponder-summanapdf2000.

12


http://www.ibr.cs.tu-bs.de/projects/jasmin/
http://www.ibr.cs.tu-bs.de/projects/jasmin/
http://www.ietf.org/html.charters/diffserv-charter.html
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-mib-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-pib-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-pib-03.txt
http://dpnm.postech.ac.kr/research/01/ipqos/dsmib/index.html
http://www-dse.doc.ic.ac.uk/~mss/Papers/Ponder-summary.pdf
http://www-dse.doc.ic.ac.uk/~mss/Papers/Ponder-summary.pdf

	Introduction
	Terminology
	Domain: DiffServ

	Concepts
	Requirements
	A Script MIB Based Approach
	Class Packages and Usage Example

	Outlook
	Adaption of a Policy Definition Language


